Perception of color and material properties in complex scenes.

نویسندگان

  • David H Brainard
  • Laurence T Maloney
چکیده

How do human observers estimate the location, form, and color of objects? Accurate estimation is challenging because the light arriving at the eyes depends not only on object properties, but also on the spectra and spatial layout of the light sources (Nassau, 1983; Foley et al., 1990). How well the visual system separates illuminant and object properties to achieve a stable representation has traditionally been studied under the rubric of color and lightness constancy. Most previous work used very simple stimuli, typically a few diffusely illuminated surfaces arranged perpendicular to the line of sight. Over the past several years, however, there has been an evident increase of interest in expanding the conceptualization of this area to incorporate effects that emerge only for complex, typically three-dimensional, scenes. The current issue features papers that represent various manifestations of this interest. One line of research investigates how the three-dimensional layout of a scene affects the perception of lightness and color. Although the current work has long-standing antecedents (e.g. Mach, 1886/1959; Hochberg and Beck, 1954; Gilchrist, 1980), methodological advances in i) experimentation with real illuminated objects (e.g. Brainard et. al, 1987; Rutherford and Brainard, 2002; Ripamonti et al., 2004; Robilotto and Zaidi, 2004), ii) the use of sophisticated graphics simulations (e.g. Yang and Maloney, 1999; Fleming, Dror, & Adelson, 2003; Boyaci, Maloney, & Hersh, 2003; Delahunt and Brainard, 2004), iii) the design of hybrid systems that combine real objects with image-based graphics and video projection (Ling and Hurlbert, 2004), and iv) psychophysical procedures (Maloney and Yang, 2003; Obein, Knoblauch, & Vienot, 2004) have opened the door for systematic exploration of a wider range of phenomena. Recent papers include work on how well vision compensates for changes in surface orientation (Boyaci et al., 2003; Ripamonti et al., 2004), how effectively it discounts inter-reflections among nearby surfaces (Bloj, Kersten, & Hurlbert, 1999; Doerschner, Boyaci, & Maloney, 2004; Delahunt and Brainard, 2004), and how the visual system effectively estimates the spectral properties and spatial layout of the illuminant in three-dimensional scenes (Kraft & Brainard, 1999; Yang & Maloney, 1999; Boyaci, Maloney, & Hersh, 2003; Bloj et al., 2004; Boyaci, Doerschner, & Maloney, 2004; Khang and Zaidi, 2004). The second thread that leads to papers in the current issue is a focus on the functional utility of color and lightness perception -- the idea that these percepts inform us about the properties of objects rather than those of light spectra. This focus resulted in a renaissance of research in color constancy over the past two decades, with particular progress being made in the development of computational models that explore how, in principle, object surface properties can be estimated from image data. As with the experimental lines, early work focused on simple scene geometries (for reviews see Hurlbert, 1998; Maloney, 1999) but consideration has recently expanded to three-dimensional configurations (Adelson and Pentland, 1996; Yang and Maloney, 1999; Bell and Freeman, 2001; Dror, Willsky, & Adelson, 2004) Of particular interest has been the elaboration of purely computational formulations into parametric models of human performance (e.g. Brainard Brunt, & Speigle, 1997; Brainard Kraft, & Longere, 2003; Boyaci et al., 2003; Doerschner et al., 2004; Boyaci et al., 2004; Bloj et al., 2004), tests of how well the visual system exploits image information identified in computational studies (Yang and Maloney, 2001; Delahunt and Brainard, 2004; Smithson and Zaidi, 2004), investigations of how well the visual system recovers perceptual correlates of material properties other than diffuse surface reflectance, such as gloss and translucency (Lu, Koenderink, & Kappers, 2000; Fleming et al., 2003; Pont & Koenderink, 2003; Obein et al., 2004), as well as how geometric aspects of surface reflectance interact with the perception of shape (Fleming et al., 2003).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Color in complex scenes.

The appearance of an object or surface depends strongly on the light from other objects and surfaces in view. This review focuses on color in complex scenes, which have regions of different colors in view simultaneously and/or successively, as in natural viewing. Two fundamental properties distinguish the chromatic representation evoked by a complex scene from the representation for an isolated...

متن کامل

Color and material perception: achievements and challenges.

There is a large literature characterizing human perception of the lightness and color of matte surfaces arranged in coplanar arrays. In the past ten years researchers have begun to examine perception of lightness and color using wider ranges of stimuli intended to better approximate the conditions of everyday viewing. One emerging line of research concerns perception of lightness and color in ...

متن کامل

‌Differences in color perception among dental students of Rafsanjan in 2003

‌Differences in color perception among dental students of Rafsanjan in 2003 Dr. M. Sadeghi* * - Assistant professor of Operative Dentistry Dept.- Faculty of Dentistry - Rafsanjan University of Medical Sciences. Background and aim: The selection of proper restoration shade and color matching to the natural teeth is one of the most complex and trustrating problems in esthetic dentistry. The goal ...

متن کامل

Physics-Based Segmentation of Complex Objects Using Multiple Hypotheses of Image Formation

scription of Fig. 1, a picture containing numerous objects with many different reflective properties. We present a general framework for the segmentation of complex scenes using multiple physical hypotheses of image For a computer, however, images containing multiformation. These hypotheses specify broad classes for the shape, colored objects and multiple materials such as Fig. 1 are illuminati...

متن کامل

Computational Modeling of Visual Texture Segregation

Visual texture segregation is the perceptual phenomenon illustrated in figure 17.1. In this image a rectangular area composed of small X-shaped patterns appears as a distinct region against a background of L-shaped patterns. This segregation occurs rapidly and unconsciously, without effort or search. The rectangular area composed of Tshaped patterns, however, does not appear as a distinct regio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 4 9  شماره 

صفحات  -

تاریخ انتشار 2004